ALPHA2
Circulator pumps
1. General description

Grundfos ALPHA2 is a complete range of circulator pumps with the following features:

- AUTOADAPT function which is suitable for most installations.
- Integrated differential-pressure control enabling adjustment of pump performance to the actual system requirements.
- Automatic night setback, selectable.
- Manual summer mode.
- Dry-running protection.
- ALPHA Reader compatible from ALPHA2 model E.
- High-torque start.
- Display showing the actual power consumption in watt or the actual flow rate in m³/h.
- Motor based on permanent-magnet rotor/compact-stator technology.

ALPHA2 is energy-optimised and complies with the ErP Directive, Commission Regulation (EC) No 641/2009 and Commission Regulation (EU) No 622/2012, which has been effective as from 1 January 2013.

The installation of an ALPHA2 pump will reduce the power consumption considerably, reduce noise from thermostatic radiator valves and similar fittings and improve the control of the system.

ALPHA2 offers a host of advantages:

<table>
<thead>
<tr>
<th>Energy savings</th>
<th>Automatic control of the differential pressure.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexibility</td>
<td>Suitable for installation in existing systems.</td>
</tr>
<tr>
<td>Night setback</td>
<td>Automatic night setback, selectable.</td>
</tr>
<tr>
<td>Manual summer mode</td>
<td>Summer mode, selectable.</td>
</tr>
<tr>
<td>Dry-running protection</td>
<td>Protection of the pump against dry running during start and normal operation.</td>
</tr>
</tbody>
</table>

* Depending on the model.

1.1 Type key

Example ALPHA2 25-40 180

<table>
<thead>
<tr>
<th>Code</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA2</td>
<td>Pump range</td>
</tr>
<tr>
<td>25 -</td>
<td>Nominal diameter (DN) of inlet and outlet ports [mm] (15 = G 1 *, 25 = G 1 1/2, 32 = G 2)</td>
</tr>
<tr>
<td>40</td>
<td>Maximum head [dm]</td>
</tr>
<tr>
<td>N</td>
<td>Cast-iron pump housing</td>
</tr>
<tr>
<td>A</td>
<td>Stainless-steel pump housing</td>
</tr>
<tr>
<td></td>
<td>Pump housing with air separator</td>
</tr>
<tr>
<td>180</td>
<td>Port-to-port length [mm]</td>
</tr>
</tbody>
</table>

* Exception: UK version, size 15 = G 1 1/2.

1.2 Model type

This data booklet covers all models. The model type is stated on the nameplate. See fig. Model type on the nameplate.
The table below shows the ALPHA2 models with built-in functions and features.

<table>
<thead>
<tr>
<th>Functions/features</th>
<th>ALPHA2 model B</th>
<th>ALPHA2 model C</th>
<th>ALPHA2 model D</th>
<th>ALPHA2 model E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starts from</td>
<td>PC 12xx*</td>
<td>PC 14xx*</td>
<td>PC 15xx*</td>
<td>PC 17xx*</td>
</tr>
<tr>
<td>AUTOADAPT</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Proportional pressure</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Constant pressure</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Constant curve</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Automatic night setback</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Manual summer mode</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Dry-running protection</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ALPHA Reader</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>High-torque start</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ALPHA2XX-40</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ALPHA2XX-50 **</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ALPHA2XX-60</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>ALPHA2XX-80</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

* Production code (Year-Week)
** Not available in all countries.

1.3 Performance range

Performance range, ALPHA2
2. Applications

ALPHA2 is designed for circulating liquids in heating systems. You can also use pumps with stainless-steel pump housing in domestic hot-water systems. ALPHA2 is suitable for the following:

- Systems with constant or variable flows where it is desirable to optimise the pump duty point.
- Systems where night setback is desired
- Systems where the differential pressure of the pump is too high during periods of reduced flow demand.
- Systems with variable flows such as two-pipe heating systems with thermostatic valves for radiators or underfloor heating.
- Systems with constant or slightly variable flows such as one-pipe heating systems.

The pump is also ideal when operating in systems requiring an automatic adjustment of differential pressure to flow demands without the use of expensive bypass valves and similar components.

If an automatic bypass valve is installed to ensure a minimum flow, you must adjust the differential pressure control of the circulator pump in a way to ensure the function of the automatic bypass valve. For example, select a constant-pressure curve that is higher than the differential pressure of the valve.

You can select the appropriate pump type for a heating system according to the following guidelines:

<table>
<thead>
<tr>
<th>Range</th>
<th>Radiator system (Δt 20 °C) [m³]</th>
<th>Underfloor heating (Δt 5 °C) [m³/h]</th>
<th>Pump type</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-120</td>
<td>0.4</td>
<td>1.5</td>
<td>XX-40</td>
</tr>
<tr>
<td>120-160</td>
<td>0.5</td>
<td>2.0</td>
<td>XX-50</td>
</tr>
<tr>
<td>160-200</td>
<td>0.8</td>
<td>2.4</td>
<td>XX-60</td>
</tr>
<tr>
<td>200-300</td>
<td>0.8</td>
<td>3.5</td>
<td>XX-80</td>
</tr>
</tbody>
</table>

Note: The data are approximate values. Grundfos cannot be held responsible for wrong sizing of pumps in heating systems.

Examples of systems

- **One-pipe heating system**
- **Two-pipe heating system**
- **Underfloor heating system**
- **Domestic hot-water recirculation system**
2.1 ALPHA2, the best choice for heating systems

The heating required in a building varies greatly during the day due to changing outdoor temperatures, solar radiation and heat emanating from people, electric appliances etc. Add to this that the need for heating may vary from one section of the building to another and that the thermostatic valves of some radiators may have been turned down by the users. These circumstances will cause an uncontrolled pump to produce a too high differential pressure when the heat demand is low.

Possible consequences:
- too high energy consumption
- irregular control of the system
- noise in thermostatic radiator valves and similar fittings.

ALPHA2 automatically controls the differential pressure by adjusting the pump performance to the actual heat demand, without the use of external components.

The pump has the following control modes:
- AUTO
- ADAPT
- proportional pressure
- constant pressure
- constant curve.

2.2 AUTO\textsubscript{ADAPT}

The integrated AUTO\textsubscript{ADAPT} function is especially developed for the following:
- underfloor heating systems
- two-pipe heating systems.

In AUTO\textsubscript{ADAPT} mode, the pump is set to proportional-pressure control. The function is designed to continuously adapt the setting to the actual heating demand in the system.

AUTO\textsubscript{ADAPT} selects the best control curve under the given operating conditions. AUTO\textsubscript{ADAPT} optimises the position of the proportional-pressure curve via three steps. First, it analyses the heating system, which the circulator pump is a part of. Then, on the basis of this analysis, AUTO\textsubscript{ADAPT} verifies whether the pump pressure is too high, too low or correct. Hereby it selects the optimum proportional-pressure curve for the system within the AUTO\textsubscript{ADAPT} performance range. See fig. AUTO\textsubscript{ADAPT} performance range.

Finally, the pump is controlled according to the selected proportional-pressure curve. The pump will continue this cycle as long as it is running. You cannot expect an optimum pump setting from day one.

If the power supply fails or is disconnected, the pump stores the AUTO\textsubscript{ADAPT} setting in an internal memory and resumes the automatic adjustment when the power supply has been restored.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{AUTOADAPT_performance_range.png}
\caption{AUTO\textsubscript{ADAPT} performance range}
\end{figure}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\textbf{Pos.} & \textbf{Description} \\
\hline
1 & Max. curve \\
2 & Proportional-pressure curve \\
3 & Setpoint \\
\hline
\end{tabular}
\caption{AUTO\textsubscript{ADAPT} performance range}
\end{table}

The AUTO\textsubscript{ADAPT} function differs from other control functions as it moves the control curve within a performance range. The marked area indicates the limits for the movement of the proportional-pressure curve. See fig. AUTO\textsubscript{ADAPT} performance range.

In a system with an uncontrolled pump, a pressure rise will often cause flow-generated noise in the thermostatic radiator valves. This noise will be reduced considerably with ALPHA2.
2.2.1 Proportional pressure
Proportional-pressure control adjusts the pump performance to the actual heat demand in the system, but the pump performance follows the selected performance curve, PP1, PP2 or PP3. See fig. Three proportional-pressure curves/settings where PP2 has been selected. See Change of performance on page Change of performance for further information.

Three proportional-pressure curves/settings

2.2.2 Constant pressure
Constant-pressure control adjusts the pump performance to the actual heat demand in the system, but the pump performance follows the selected performance curve, CP1, CP2 or CP3. See fig. Three constant-pressure curves/settings where CP1 has been selected. See Change of performance on page Change of performance for further information.

Three constant-pressure curves/settings

The selection of the right constant-pressure setting depends on the characteristics of the heating system in question and the actual heat demand.

2.2.3 Constant curve
At constant-curve/constant-speed operation, the pump runs at a constant speed, independent of the actual flow demand in the system. The pump performance follows the selected performance curve, I, II or III. See fig. Three constant-curve/constant-speed settings where II has been selected. See Change of performance on page Change of performance for further information.

Three constant-curve/constant-speed settings

The selection of the right constant-curve/constant-speed setting depends on the characteristics of the heating system in question.

2.2.4 Advantages of ALPHA pump control
In ALPHA2, control is effected by adapting the differential pressure to the flow (proportional-pressure and constant-pressure control).
Contrary to an uncontrolled pump, the proportional-pressure-controlled ALPHA2 reduces the differential pressure as a result of falling heat demand.
If the heat demand falls, for instance due to solar radiation, the thermostatic radiator valves will close, and, for the uncontrolled pump, the flow resistance of the system will rise, for instance from \(A_1 \) to \(A_2 \). See fig. Uncontrolled pump.
In a heating system with an uncontrolled pump, this situation will cause a pressure rise in the system by \(\Delta H_1 \).

Uncontrolled pump

In a system with an ALPHA2 pump set to proportional-pressure control, the differential pressure will be reduced by \(\Delta H_2 \) and result in reduced energy consumption. See fig. Pump in proportional-pressure control mode.

Pump in proportional-pressure control mode
2.2.5 Overview of control mode

<table>
<thead>
<tr>
<th>Application</th>
<th>Control mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Underfloor heating</td>
<td>Constant pressure</td>
</tr>
<tr>
<td>Two pipe system</td>
<td>AUTO or proportional pressure</td>
</tr>
<tr>
<td>Ventilation</td>
<td>Speed 1, 2 or 3</td>
</tr>
<tr>
<td>Boiler-shunt</td>
<td>Speed 1, 2 or 3</td>
</tr>
<tr>
<td>One pipe system</td>
<td>Constant pressure or speed 1, 2 or 3</td>
</tr>
<tr>
<td>Domestic hot water</td>
<td>Speed 1, 2 or 3</td>
</tr>
</tbody>
</table>

2.3 ALPHA2 features

2.3.1 Automatic night setback

You enable the automatic night setback with the button on the control box.

Factory setting: Disabled.

Note: If you have set the pump to speed I, II or III, you cannot enable automatic night setback.

Once you have enabled automatic night setback, the pump automatically changes between normal duty and night setback. The changeover depends on the flow-pipe temperature measured by the integrated temperature sensor.

Function

If automatic night setback is to be used in the system, you must install the pump in the flow pipe.

Changeover between normal duty and night setback depends on the flow-pipe temperature.

The pump automatically changes over to night setback when a flow-pipe temperature drop of more than 10 to 15 °C within approx. two hours is registered. The temperature drop must be at least 0.1 °C/min.

Changeover to normal duty takes place without a time lag when the flow-pipe temperature has increased by approx. 10 °C.

2.3.2 Manual summer mode

You can select the manual summer mode as from ALPHA2 model C.

You enable the manual summer mode with the button on the front of the control box.

Function

In the manual summer mode, the pump is automatically started at low speed to avoid blocking the rotor as well as sticky valves and non-return valves. The display is turned off.

If any alarms occur during the manual summer mode, no alarms will be shown. When you deactivate the manual summer mode again, only the actual alarms will be displayed.

You deactivate the manual summer mode by pressing any of the buttons, and then the pump returns to the previous mode and setting.

If you have enabled the automatic night setback mode before setting the manual summer mode, the pump will return to automatic night setback mode after the manual summer mode.

2.3.3 Dry-running protection

Dry-running protection is active as from ALPHA2 model D

The active dry-run feature protects the reliable wet-runner design of the ALPHA2 pump.

Dry-running protection protects the pump against dry running during start and normal operation. The user will be informed via an error code in the display.

2.3.4 ALPHA Reader

ALPHA Reader is an accessory

Compatible with ALPHA2 model E.

This feature is used for hydronic balancing radiators and underfloor heating in heating systems in a fast and safe way for the benefit of the installer as well as the end-user. ALPHA Reader provides read-out of internal data from the pump. See fig. ALPHA2 and an ALPHA Reader. The data will be transmitted to the handheld device, e.g. smartphone or tablet. In order to perform a balancing of the system, you must download the Grundfos GO balance app. which is available in Apple App Store and Google Play.

ALPHA Reader is only necessary during hydraulic balancing and can be removed afterwards. See also ALPHA Reader.

2.3.5 High-torque start

High-torque start is active as from ALPHA2 model D

In case of a blocked rotor, the pump will start vibrating automatically with a frequency of around 3 Hz during startup. Any dirt deposits that might prevent the impeller from rotating will be broken up swiftly, and the pump will resume normal operation.
3. Operating conditions

3.1 Pumped liquids

The pump is suitable for the following liquids:

- clean, thin, non-aggressive and non-explosive liquids, not containing solid particles or fibres
- cooling liquids, not containing mineral oil
- softened water.

The kinematic viscosity of water is $\nu = 1 \text{ mm}^2/\text{s} (1 \text{ cSt})$ at $20 \, ^\circ\text{C}$. If you use the pump for a liquid with a higher viscosity, the hydraulic performance of the pump will be reduced.

Example: 50 % glycol at $20 \, ^\circ\text{C}$ means a viscosity of approx. $10 \text{ mm}^2/\text{s} (10 \text{ cSt})$ and a reduction of pump performance by approx. 15 %.

Do not use additives that in any way can or will disturb the functionality of the pump.

When selecting a pump, take the viscosity of the pumped liquid into consideration.

3.2 Technical data

3.2.1 Liquid temperature

ALPHA2 pumps: 2-110 °C.

In domestic hot-water systems, we recommend that you keep the liquid temperature between 50 and 65 °C to eliminate the risk of lime precipitation.

To avoid condensation in the control box and stator, the liquid temperature must always be higher than the ambient temperature. See table below.

<table>
<thead>
<tr>
<th>Ambient temperature [°C]</th>
<th>Liquid temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Min. 2, Max. 110</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

The ALPHA2 pump can, however, run at ambient temperatures higher than the liquid temperature if the plug connection in the pump head is pointing downwards. See figures Possible control box positions, heating systems and Possible control box position, air-conditioning and cold-water systems.

3.2.2 System pressure

PN 10: Maximum 1.0 MPa (10 bar).

3.2.3 Inlet pressure

To avoid cavitation noise and damage to the pump bearings, the following minimum pressures are required at the inlet port.

<table>
<thead>
<tr>
<th>Liquid temperature</th>
<th>75 °C</th>
<th>90 °C</th>
<th>110 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet pressure</td>
<td>0.5 m head</td>
<td>2.8 m head</td>
<td>10.8 m head</td>
</tr>
<tr>
<td></td>
<td>0.005 MPa</td>
<td>0.028 MPa</td>
<td>0.108 MPa</td>
</tr>
<tr>
<td></td>
<td>0.05 bar</td>
<td>0.28 bar</td>
<td>1.08 bar</td>
</tr>
</tbody>
</table>

3.2.4 Electrical data

- **Supply voltage**: 1 x 230 V ± 10 %, 50/60 Hz, PE.
- **Motor protection**: The pump requires no external motor protection.
- **Enclosure class**: IPX4D.
- **Insulation class**: F.
- **Relative air humidity**: Maximum 95 %.
- **Ambient temperature**: 0-40 °C.
- **Temperature class**: TF110 to EN 60335-2-51.
- **EMC (electromagnetic compatibility)**: EMC Directive (2014/30/EU)
- **Sound pressure level**: ≤ 43 dB(A).
4. Construction

ALPHA2 is designed for long and trouble-free operation as a canned-rotor type, i.e. pump and motor form an integral unit without shaft seal, with only one gasket for sealing. The bearings are lubricated by the pumped liquid. These constructions ensure maintenance-free operation. The pump is characterised by the following:

- Permanent-magnet rotor/compact-stator motor which contributes to high efficiency and high starting torque.
- Ceramic shaft and radial bearings which contribute to long life.
- Carbon thrust bearing which contributes to long life.
- Stainless-steel rotor can, bearing plate and rotor cladding which contribute to corrosion-free long life.
- Composite impeller which contributes to corrosion-free long life.
- Cast-iron or stainless-steel pump housing which contributes to flexibility.
- Automatic venting which contributes to easy commissioning.
- Compact design featuring pump head with integrated control box and operating panel which fits into most common installations.

4.1 Sectional drawing

4.2 Material specification

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
<th>Material</th>
<th>EN/DIN</th>
<th>AISI/ASTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Controller complete</td>
<td>Composite, PC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Rotor can</td>
<td>Stainless steel</td>
<td>1.4401</td>
<td>316</td>
</tr>
<tr>
<td>9a</td>
<td>Radial bearing</td>
<td>Ceramics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Shaft</td>
<td>Ceramics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11a</td>
<td>Rotor cladding</td>
<td>Stainless steel</td>
<td>1.4401</td>
<td>316</td>
</tr>
<tr>
<td>12</td>
<td>Thrust bearing</td>
<td>Carbon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12a</td>
<td>Thrust bearing retainer</td>
<td>EPDM rubber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Bearing plate</td>
<td>Stainless steel</td>
<td>1.4301</td>
<td>304</td>
</tr>
<tr>
<td>16</td>
<td>Impeller</td>
<td>Composite, PES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Pump housing</td>
<td>Cast iron</td>
<td>EN-GJL-150</td>
<td>A48-150B</td>
</tr>
<tr>
<td>19</td>
<td>Gasket</td>
<td>EPDM rubber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Push-button for selection of pump setting.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Push-button for enabling or disabling of automatic night setback or manual summer mode. You have to activate both settings manually.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Push-button for selection of parameter to be shown in the display, i.e. actual power consumption in watt or actual flowrate in m³/h.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The display is on when you have switched on the power supply. The display shows the actual pump power consumption in watt (integer) or the actual flowrate in m³/h, in steps of 0.1 m³/h, during operation.

4.3 Motor and control box

The motor is a 4-pole synchronous permanent-magnet motor. The pump controller is incorporated in the control box, which is fitted to the stator housing and connected to the stator via a terminal plug. The control box has an integrated operating panel with three push-buttons (1, 2 and 3) and a 2-digit 7-segment display. See fig. Position of push-buttons.
Faults preventing the pump from operating properly are indicated by fault codes in the display, for example in the case of a blocked rotor.
The following faults can be indicated in the display:
• E1: blocked rotor
• E2: insufficient supply voltage
• E3: electrical fault
• E4: dry-run.

Figures Possible control box positions, heating systems and Possible control box position, air-conditioning and cold-water systems show the possible control box positions in heating systems as well as in air-conditioning and cold-water systems.

4.4 Unique air vent system
The pump housing with air separator is installed in systems where the liquid contains so much air that a circulator pump without air separator cannot start or keep up a continuous circulation. The pump housing is available only for upward water flows.

The air-containing liquid is guided from the inlet port to the nozzle of the air-separating chamber and caused to circulate considerably in the relatively large chamber, thus creating a relatively lower pressure at the back (top) of the chamber. This lower pressure combined with the reduced velocity of the liquid in the air-separating chamber will cause a separation of air from the liquid. Due to its lower density, the air will escape through an automatic air vent fitted to the air-separating chamber.

The pump housing has an Rp 3/8 tapping for fitting of an air vent. The air vent is not supplied with the pump.

The plug incorporates cable relief and a locking function for securing the connection of the supply cable.

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Standard position</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Air separation as %</td>
<td>0.5 m³/h</td>
</tr>
<tr>
<td>B</td>
<td>Quantity of air as % of pumped liquid</td>
<td>1.0 m³/h</td>
</tr>
<tr>
<td>C</td>
<td>Q = 0.5 m³/h</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Q = 1.0 m³/h</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Q = 1.25 m³/h</td>
<td></td>
</tr>
</tbody>
</table>
5. Installation and startup

5.1 Installation
In most cases, the installation of ALPHA2 is reduced to the mechanical installation and connection to the power supply. Always install the pump with horizontal motor shaft.

5.2 Startup
Do not start the pump until the system has been filled with liquid. Make sure that the required minimum inlet pressure is available at the pump inlet.
When using the pump for the first time, the system must be vented at the highest point. The pump is self-venting through the system.

5.3 Setting the pump
With the push-button on the control box, you can set the electronically controlled pump to the following:
- \(\text{AUTO}_\text{ADAPT} \)
- three proportional-pressure curves (PP1, PP2, PP3)
- three constant-pressure curves (CP1, CP2, CP3)
- three constant curves/constant speeds (I, II, III).

5.3.1 Factory setting
The push-buttons on the pump control box have been factory-set as shown in the table below. These settings are suitable for a large majority of all single- and two-family houses.

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Setting</th>
<th>Automatic night setback</th>
<th>Manual summer mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA2 XX-40</td>
<td>AUTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALPHA2 XX-50</td>
<td>ADAPT</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>ALPHA2 XX-60</td>
<td>AUTO</td>
<td>Disabled</td>
<td>Disabled</td>
</tr>
<tr>
<td>ALPHA2 XX-80</td>
<td>AUTO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.3.2 Change of performance

You can change the pump performance (flow rate and head) by pressing the control box push-button as indicated in fig. Pump setting in relation to pump performance and the table below.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Pump curve</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO ADAPT factory setting</td>
<td>Highest to lowest proportional-pressure curve</td>
<td>The AUTO ADAPT function enables the pump to control the pump performance automatically within a defined performance range. See fig. Pump setting in relation to pump performance. Adjustment of the pump performance to the size of the system. Adjustment of the pump performance to the variations in load over time. In AUTO ADAPT, the pump is set to proportional-pressure control.</td>
</tr>
<tr>
<td>PP1</td>
<td>Lowest proportional-pressure curve</td>
<td>The duty point of the pump will move up or down on the lowest proportional-pressure curve, depending on the heat demand in the system. See fig. Pump setting in relation to pump performance. The head (pressure) is reduced at falling heat demand and increased at rising heat demand.</td>
</tr>
<tr>
<td>PP2</td>
<td>Intermediate proportional-pressure curve</td>
<td>The duty point of the pump will move up or down on the intermediate proportional-pressure curve, depending on the heat demand in the system. See fig. Pump setting in relation to pump performance. The head (pressure) is reduced at falling heat demand and increased at rising heat demand.</td>
</tr>
<tr>
<td>PP3</td>
<td>Highest proportional-pressure curve</td>
<td>The duty point of the pump will move up or down on the highest proportional-pressure curve, depending on the heat demand in the system. See fig. Pump setting in relation to pump performance. The head (pressure) is reduced at falling heat demand and increased at rising heat demand.</td>
</tr>
<tr>
<td>CP1</td>
<td>Lowest constant-pressure curve</td>
<td>The duty point of the pump will move out or in on the lowest constant-pressure curve, depending on the heat demand in the system. See fig. Pump setting in relation to pump performance. The head (pressure) is kept constant, irrespective of the heat demand.</td>
</tr>
<tr>
<td>CP2</td>
<td>Intermediate constant-pressure curve</td>
<td>The duty point of the pump will move out or in on the intermediate constant-pressure curve, depending on the heat demand in the system. See fig. Pump setting in relation to pump performance. The head (pressure) is kept constant, irrespective of the heat demand.</td>
</tr>
<tr>
<td>CP3</td>
<td>Highest constant-pressure curve</td>
<td>The duty point of the pump will move out or in on the highest constant-pressure curve, depending on the heat demand in the system. See fig. Pump setting in relation to pump performance. The head (pressure) is kept constant, irrespective of the heat demand.</td>
</tr>
</tbody>
</table>
Setting

<table>
<thead>
<tr>
<th>Setting</th>
<th>Pump curve</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>Speed III</td>
<td>The pump runs on a constant curve which means that it runs at a constant speed. In speed III, the pump is set to run on the maximum curve under all operating conditions. See fig. Pump setting in relation to pump performance. You can obtain quick venting of the pump by setting the pump to speed III for a short period.</td>
</tr>
<tr>
<td>II</td>
<td>Speed II</td>
<td>The pump runs on a constant curve which means that it runs at a constant speed. In speed II, the pump is set to run on the intermediate curve under all operating conditions. See fig. Pump setting in relation to pump performance.</td>
</tr>
<tr>
<td>I</td>
<td>Speed I</td>
<td>The pump runs on a constant curve which means that it runs at a constant speed. In speed I, the pump is set to run on the minimum curve under all operating conditions. See fig. Pump setting in relation to pump performance.</td>
</tr>
<tr>
<td></td>
<td>Automatic night setback and manual summer mode</td>
<td>The pump changes to the curve for automatic night setback, i.e. absolute minimum performance and power consumption, provided that certain conditions are met. In manual summer mode, the pump is automatically started frequently at low speed to avoid a blocking rotor. The display is turned off. See sections Automatic night setback and Manual summer mode.</td>
</tr>
</tbody>
</table>
6. Guide to performance curves

Each pump setting has its own performance curve (Q/H curve). However, AUTOADAPT covers a performance range. A power curve, P1, belongs to each Q/H curve. The power curve shows the pump power consumption in watt at a given Q/H curve. The P1 value corresponds to the value that you can read from the pump display. See fig. Performance curves in relation to pump setting.

Performance curves in relation to pump setting

<table>
<thead>
<tr>
<th>Setting</th>
<th>Pump curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOADAPT (factory setting)</td>
<td>Setpoint within the marked area</td>
</tr>
<tr>
<td>PP1</td>
<td>Lowest proportional-pressure curve</td>
</tr>
<tr>
<td>PP2</td>
<td>Intermediate proportional-pressure curve</td>
</tr>
<tr>
<td>PP3</td>
<td>Highest proportional-pressure curve</td>
</tr>
</tbody>
</table>

![Diagram of performance curves]
<table>
<thead>
<tr>
<th>Setting</th>
<th>Pump curve</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP1</td>
<td>Lowest constant-pressure curve</td>
</tr>
<tr>
<td>CP2</td>
<td>Intermediate constant-pressure curve</td>
</tr>
<tr>
<td>CP3</td>
<td>Highest constant-pressure curve</td>
</tr>
<tr>
<td>III</td>
<td>Constant curve/constant speed III</td>
</tr>
<tr>
<td>II</td>
<td>Constant curve/constant speed II</td>
</tr>
<tr>
<td>I</td>
<td>Constant curve/constant speed I</td>
</tr>
</tbody>
</table>

Curve for automatic night setback/manual summer mode
6.1 Curve conditions

The guidelines below apply to the performance curves in section Performance curves and technical data:

- Test liquid: airless water.
- The curves apply to a density of $\rho = 983.2 \text{ kg/m}^3$ and a liquid temperature of 60 °C.
- All curves show average values and must not be used as guarantee curves. If a specific minimum performance is required, make individual measurements.
- The curves for speeds I, II and III are marked.
- The curves apply to a kinematic viscosity of $\nu = 0.474 \text{ mm}^2/\text{s}$ (0.474 cSt).
- The conversion between head H [m] and pressure p [kPa] has been made for water with a density of $\rho = 1000 \text{ kg/m}^3$. For liquids with other densities, for example hot water, the outlet pressure is proportional to the density.
- Curves obtained according to EN 16297.

6.1.1 Symbols used on the following pages

For ALPHA2 pumps, the energy efficiency index (EEI) is down to EEI ≤ 0.15 and categorised as best in class. ALPHA2 with AUTO ADAPT function is the preferred choice for domestic installations and a true efficiency frontrunner.

The EEI is an indicator of the efficiency of the circulator and is the relation between the weighted average electrical input power of the ALPHA2 (considering standardized load profile) and the average input power of a standard circulator having the same hydraulic output power.

The ALPHA2 EEI is far below the ErP 2015 requirements and even exceeds the best in class benchmark level. See fig. EEI limits and the current positioning of the ALPHA2.

EEI limits and the current positioning of the ALPHA2

With an energy efficiency index (EEI) well below the ErP benchmark level, you can achieve energy savings of up to 85 % compared to a typical circulator and thus a remarkably fast return on investment. This means, of course, that ALPHA2 more than meets the standards of the ErP legislation.
7. Performance curves and technical data

7.1 ALPHA2 15-40

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO/ADAPT</td>
<td>4-18</td>
<td>0.04 - 0.18</td>
<td>System pressure: Maximum 1.0 MPa (10 bar).</td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td>3</td>
<td>0.04</td>
<td>Liquid temperature: 2-110 °C (TF 110).</td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>18</td>
<td>0.18</td>
<td>Specific EEI: ≤ 0.15.</td>
<td></td>
</tr>
</tbody>
</table>

The pump incorporates overload protection.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA2 15-40</td>
<td>130</td>
<td>54</td>
<td>54</td>
<td>44</td>
<td>44</td>
<td>36</td>
<td>104</td>
<td>47</td>
<td>G 1</td>
<td>1.7</td>
<td>1.9</td>
<td>0.004</td>
</tr>
</tbody>
</table>

See product numbers and QR codes in Product numbers.
7.2 ALPHA2 15-50

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOADAPT</td>
<td>4-26</td>
<td>0.04 - 0.24</td>
<td>System pressure: Maximum 1.0 MPa (10 bar).</td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td>3</td>
<td>0.04</td>
<td>Liquid temperature: 2-110 °C (TF 110).</td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>26</td>
<td>0.24</td>
<td>Specific EEI: ≤ 0.16.</td>
<td></td>
</tr>
</tbody>
</table>

The pump incorporates overload protection.

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Dimensions [mm]</th>
<th>Weights [kg]</th>
<th>Ship. vol. [m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA2 15-50</td>
<td>L1</td>
<td>B1</td>
<td>B2</td>
</tr>
<tr>
<td></td>
<td>130</td>
<td>54</td>
<td>54</td>
</tr>
</tbody>
</table>

See product numbers and QR codes in Product numbers.
7.3 ALPHA2 15-60

The pump incorporates overload protection.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOADAPT</td>
<td>4-34</td>
<td>0.04 - 0.32</td>
<td>System pressure: Maximum 1.0 MPa (10 bar).</td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td>3</td>
<td>0.04</td>
<td>Liquid temperature: 2-110 °C (TF 110).</td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>34</td>
<td>0.32</td>
<td>Specific EEI: ≤ 0.17.</td>
<td></td>
</tr>
</tbody>
</table>

See product numbers and QR codes in Product numbers.

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Dimensions [mm]</th>
<th>Weights [kg]</th>
<th>Ship. vol. [m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L1</td>
<td>B1</td>
<td>B2</td>
</tr>
<tr>
<td>ALPHA2 15-60</td>
<td>130</td>
<td>54</td>
<td>54</td>
</tr>
</tbody>
</table>
7.4 ALPHA2 15-80

Performance curves and technical data

Table 1: ALPHA2 15-80

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Dimensions [mm]</th>
<th>Weights [kg]</th>
<th>Ship. vol. [m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA2 15-80</td>
<td>L1 130</td>
<td>B1 54</td>
<td>B2 54</td>
</tr>
</tbody>
</table>

See product numbers and QR codes in Product numbers.

Connections: See 8.1 Unions and valve kits.

System pressure: Maximum 1.0 MPa (10 bar).

Liquid temperature: 2-110 °C (TF 110).

Specific EEI: ≤ 0.18.

The pump incorporates overload protection.
7.5 ALPHA2 20-40 N

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOADAPT</td>
<td>4-18</td>
<td>0.04 - 0.18</td>
<td>System pressure:</td>
<td>Maximum 1.0 MPa (10 bar).</td>
</tr>
<tr>
<td>Min.</td>
<td>3</td>
<td>0.04</td>
<td>Liquid temperature:</td>
<td>2-110 °C (TF 110).</td>
</tr>
<tr>
<td>Max.</td>
<td>18</td>
<td>0.18</td>
<td>Specific EEI:</td>
<td>≤ 0.15.</td>
</tr>
</tbody>
</table>

The pump incorporates overload protection.

Pump type	Dimensions [mm]	Weights [kg]	Ship. vol. [m³]
ALPHA2 20-40 N | L1 150 B1 54 | H3 44 H2 37 | G 2.0 |
 | B2 54 B3 44 | H3 47 G 1 1/4 | 2.1 0.004 |

See product numbers and QR codes in Product numbers.
7.6 ALPHA2 20-60 N

Performance curves and technical data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO/ADAPT</td>
<td>4-34</td>
<td>0.04 - 0.32</td>
<td>System pressure: Maximum 1.0 MPa (10 bar).</td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td>3</td>
<td>0.04</td>
<td>Liquid temperature: 2-110 °C (TF 110).</td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>34</td>
<td>0.32</td>
<td>Specific EEI: ≤ 0.17.</td>
<td></td>
</tr>
</tbody>
</table>

The pump incorporates overload protection.

See product numbers and QR codes in Product numbers.

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Dimensions [mm]</th>
<th>Weights [kg]</th>
<th>Ship. vol. [m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA2 20-60 N</td>
<td>L1 150</td>
<td>B1 54</td>
<td>B2 54</td>
</tr>
</tbody>
</table>
7.7 ALPHA2 25-40 (N)

Performance curves and technical data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOADAPT</td>
<td>4-18</td>
<td>0.04 - 0.18</td>
<td>System pressure: Maximum 1.0 MPa (10 bar).</td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td>3</td>
<td>0.04</td>
<td>Liquid temperature: 2-110 °C (TF 110).</td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>18</td>
<td>0.18</td>
<td>Also available with: Stainless-steel pump housing, type N.</td>
<td></td>
</tr>
</tbody>
</table>

The pump incorporates overload protection. Specific EEI: ≤ 0.15.

Dimensions [mm] and Weights [kg]

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Dimensions</th>
<th>Weights</th>
<th>Ship. vol.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L1</td>
<td>B1</td>
<td>B2</td>
</tr>
<tr>
<td>ALPHA2 25-40</td>
<td>130</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>ALPHA2 25-40 N</td>
<td>130</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>ALPHA2 25-40</td>
<td>180</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>ALPHA2 25-40 N</td>
<td>180</td>
<td>54</td>
<td>54</td>
</tr>
</tbody>
</table>

See product numbers and QR codes in Product numbers.
7.8 ALPHA2 25-50 (N)

The pump incorporates overload protection. Specific EEI: ≤ 0.16.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO/ADAPT</td>
<td>4-26</td>
<td>0.04 - 0.24</td>
<td>System pressure: Maximum 1.0 MPa (10 bar).</td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td>3</td>
<td>0.04</td>
<td>Liquid temperature: 2-110 °C (TF 110).</td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>26</td>
<td>0.24</td>
<td>Also available with: Stainless-steel pump housing, type N.</td>
<td></td>
</tr>
</tbody>
</table>

See product numbers and QR codes in Product numbers.
7.9 ALPHA2 25-60 (N)

<table>
<thead>
<tr>
<th>Speed</th>
<th>P1 [W]</th>
<th>I₁ [A]</th>
<th>Connections:</th>
<th>System pressure:</th>
<th>Liquid temperature:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO/ADAPT</td>
<td>4-34</td>
<td>0.04 - 0.32</td>
<td>See 8.1 Unions and valve kits.</td>
<td>Maximum 1.0 MPa (10 bar).</td>
<td>2-110 °C (TF 110).</td>
</tr>
<tr>
<td>Min.</td>
<td>3</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>34</td>
<td>0.32</td>
<td>Also available with: Stainless-steel pump housing, type N.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The pump incorporates overload protection. Specific EEI: ≤ 0.17.

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Dimensions [mm]</th>
<th>Weights [kg]</th>
<th>Ship. vol. [m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L1</td>
<td>B1</td>
<td>B2</td>
</tr>
<tr>
<td>ALPHA2 25-60</td>
<td>130</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>ALPHA2 25-60 N</td>
<td>130</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>ALPHA2 25-60</td>
<td>180</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>ALPHA2 25-60 N</td>
<td>180</td>
<td>54</td>
<td>54</td>
</tr>
</tbody>
</table>

See product numbers and QR codes in Product numbers.
7.10 ALPHA2 25-80 (N)

Speed	**P1 [W]**	**I₁ [A]**	**Connections:**	**See 8.1 Unions and valve kits.**
AUTO_{ADAPT} | 4-50 | 0.04 - 0.44 | System pressure: | Maximum 1.0 MPa (10 bar).
Min. | 3 | 0.04 | Liquid temperature: | 2-110 °C (TF 110).
Max. | 50 | 0.44 | Also available with: | Stainless-steel pump housing, type N.

The pump incorporates overload protection.

- **Specific EEI:** \(\leq 0.18 \).

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Dimensions [mm]</th>
<th>Weights [kg]</th>
<th>Ship. vol. [m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L1</td>
<td>B1</td>
<td>B2</td>
</tr>
<tr>
<td>ALPHA2 25-80</td>
<td>130</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>ALPHA2 25-80 N</td>
<td>130</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>ALPHA2 25-80</td>
<td>180</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>ALPHA2 25-80 N</td>
<td>180</td>
<td>54</td>
<td>54</td>
</tr>
</tbody>
</table>

See product numbers and QR codes in Product numbers.
7.11 ALPHA2 32-40 (N)

Performance curves and technical data

Speed	**P1 [W]**	**I₁ [A]**	Connections:	See 8.1 Unions and valve kits.
AUTOADAPT | 4-18 | 0.04 - 0.18 | System pressure: Maximum 1.0 MPa (10 bar).
Min. | 3 | 0.04 | Liquid temperature: 2-110 °C (TF 110).
Max. | 18 | 0.18 | Also available with: Stainless-steel pump housing, type N.
The pump incorporates overload protection. | Specific EEI: ≤ 0.15.

Pump type	**Dimensions [mm]**	**Weights [kg]**	**Ship. vol. [m³]**
ALPHA2 32-40 | L1 180 | B1 54 | B2 54 | B3 44 | B4 44 | H1 36 | H2 104 | H3 47 | G 2 | Net 2.1 | Gross 2.3 | 0.004
ALPHA2 32-40 N | L1 180 | B1 54 | B2 54 | B3 44 | B4 44 | H1 37 | H2 104 | H3 47 | G 2 | Net 2.3 | Gross 2.4 | 0.004

See product numbers and QR codes in Product numbers.
7.12 ALPHA2 32-50 (N)

Performance curves and technical data

Speed	**P1 [W]**	**I₁ [A]**	**Connections:**	**See 8.1 Unions and valve kits.**
AUTOADAPT | 4-26 | 0.04 - 0.24 | System pressure: Maximum 1.0 MPa (10 bar). |
Min. | 3 | 0.04 | Liquid temperature: 2-110 °C (TF 110). |
Max. | 26 | 0.24 | Also available with: Stainless-steel pump housing, type N. |

The pump incorporates overload protection. Specific EEI: ≤ 0.16.

Dimensions [mm] and Weights [kg]

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA2 32-50</td>
<td>180</td>
<td>54</td>
<td>54</td>
<td>44</td>
<td>44</td>
<td>36</td>
<td>104</td>
<td>47</td>
<td>G 2</td>
<td>2.1</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-50 N</td>
<td>180</td>
<td>54</td>
<td>54</td>
<td>44</td>
<td>44</td>
<td>37</td>
<td>104</td>
<td>47</td>
<td>G 2</td>
<td>2.3</td>
<td>2.4</td>
<td>0.004</td>
</tr>
</tbody>
</table>

See product numbers and QR codes in Product numbers.
7.13 ALPHA2 32-60 (N)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO<sub>ADAPT</sub></td>
<td>4-34</td>
<td>0.04 - 0.32</td>
<td>System pressure: Maximum 1.0 MPa (10 bar).</td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td>3</td>
<td>0.04</td>
<td>Liquid temperature: 2-110 °C (TF 110).</td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>34</td>
<td>0.32</td>
<td>Also available with: Stainless-steel pump housing, type N.</td>
<td></td>
</tr>
</tbody>
</table>

The pump incorporates overload protection. Specific EEI: \(\leq 0.17 \).

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Dimensions [mm]</th>
<th>Weights [kg]</th>
<th>Ship. vol. [m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA2 32-60</td>
<td>L1 180</td>
<td>B1 54</td>
<td>B2 54</td>
</tr>
<tr>
<td>ALPHA2 32-60 N</td>
<td>L1 180</td>
<td>B1 54</td>
<td>B2 54</td>
</tr>
</tbody>
</table>

See product numbers and QR codes in Product numbers.
7.14 ALPHA2 32-80 (N)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOADAPT</td>
<td>4-50</td>
<td>0.04 - 0.44</td>
<td>System pressure: Maximum 1.0 MPa (10 bar).</td>
<td></td>
</tr>
<tr>
<td>Min.</td>
<td>3</td>
<td>0.04</td>
<td>Liquid temperature: 2-110 °C (TF 110).</td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>50</td>
<td>0.44</td>
<td>Also available with: Stainless-steel pump housing, type N.</td>
<td></td>
</tr>
</tbody>
</table>

The pump incorporates overload protection. Specific EEI: ≤ 0.18.

Pump type

<table>
<thead>
<tr>
<th>Dimensions [mm]</th>
<th>Weights [kg]</th>
<th>Ship. vol. [m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>B1</td>
<td>B2</td>
</tr>
<tr>
<td>ALPHA2 32-80</td>
<td>180</td>
<td>54</td>
</tr>
<tr>
<td>ALPHA2 32-80 N</td>
<td>180</td>
<td>54</td>
</tr>
</tbody>
</table>

See product numbers and QR codes in Product numbers.

See product numbers and QR codes in Product numbers.
8. Accessories

8.1 Unions and valve kits

Product numbers, unions

<table>
<thead>
<tr>
<th>Product number</th>
<th>Rp mm</th>
<th>R mm</th>
<th>Rp mm</th>
<th>mm</th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/4</td>
<td>1</td>
<td>1/4</td>
<td>1</td>
<td>1/4</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>1/4</td>
<td>1/4</td>
<td>1</td>
<td>1/4</td>
<td>22</td>
</tr>
<tr>
<td>1/4</td>
<td>1</td>
<td>1/4</td>
<td>1</td>
<td>1/4</td>
<td>22</td>
</tr>
<tr>
<td>1/4</td>
<td>1</td>
<td>1/4</td>
<td>1</td>
<td>1/4</td>
<td>22</td>
</tr>
</tbody>
</table>

Note: The product numbers are always for one complete set, incl. gaskets. The product numbers for the very standard sizes are printed in bold.

* When ordering for UK 15-xx versions, use product numbers for 25-xx (G 1 1/2).

G-threads have a cylindrical form in accordance with the EN ISO 228-1 standard and are not sealing the thread; it requires a flat gasket. You can only screw male G-threads (cylindrical) into female G-threads. The G-threads are standard thread on the pump housing.

R-threads are tapered external threads in accordance with the EN 10226-1 standard.

Rc- or Rp-threads are internal threads with either tapered or cylindrical (parallel) threads. You can screw male R-threads (conical) into female Rc- or Rp-threads. See fig. Thread types and combinations (examples).

8.2 Insulating kits

The pump is supplied with two insulating shells. Type A pumps with air-separating chamber are not supplied with insulating shells, but you can order them as an accessory. See the table below.

The insulating kit, which is tailored to the individual pump type, encloses the entire pump housing. It's easy to fit the two insulating shells around the pump. See fig. Insulating shells.

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA2 XX-XX 130</td>
<td>98091786</td>
</tr>
<tr>
<td>ALPHA2 XX-XX 180</td>
<td>98091787</td>
</tr>
<tr>
<td>ALPHA2 XX-XX A</td>
<td>505822</td>
</tr>
</tbody>
</table>

Thread types and combinations (examples)

Insulating shells
8.3 ALPHA plugs

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ALPHA plug with cable gland, standard plug connector, complete</td>
<td>98284561</td>
</tr>
<tr>
<td>2</td>
<td>ALPHA plug angled 90 ° left, with cable gland</td>
<td>98610291</td>
</tr>
<tr>
<td>3</td>
<td>ALPHA plug angled 90 ° left, including 4 m cable</td>
<td>96884669</td>
</tr>
<tr>
<td>4*</td>
<td>ALPHA plug angled 90 ° left, including 1 m cable and integrated NTC protection resistor</td>
<td>97844632</td>
</tr>
</tbody>
</table>

* This special cable with an active built-in NTC protection circuit, will reduce possible inrush currents. To be used in case of e.g poor quality of relay components that are sensitive to inrush current.

8.4 ALPHA Reader

The ALPHA Reader unit MI401 is the receiver and transmitter of pump performance data. The unit broadcasts the measured data from the pump to an Android or iOS-based mobile device via Bluetooth. The unit uses a small lithium battery.

The unit is together with the Grundfos GO Balance app used for balancing heating system primarily in one- and two family houses. The app guides you through a number of steps where information on installation and measurements from the pump is being collected. In a two-pipe system or an underfloor heating system, the app calculates the balancing values for each of the valves. On the basis of these values, the app guides you through the adjustment of each presetting valve in the system.

The app is available for both Android and iOS devices, and you can download it free of charge from Google Play and App Store.

<table>
<thead>
<tr>
<th>Description</th>
<th>Product number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA Reader MI401</td>
<td>98916967</td>
</tr>
</tbody>
</table>
9. Product numbers

9.1 ALPHA2 for the D-A-CH market (Germany, Austria and Switzerland)

9.1.1 Model E

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Port-to-port length [mm]</th>
<th>Connection</th>
<th>Product number</th>
<th>Data sheet Page</th>
<th>Weights gross [kg]</th>
<th>Ship. vol. [m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA2 15-40</td>
<td>130</td>
<td>G 1</td>
<td>99261679</td>
<td>ALPHA2 15-40</td>
<td>1.9</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 15-60</td>
<td>130</td>
<td>G 1</td>
<td>99261696</td>
<td>ALPHA2 15-60</td>
<td>1.9</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 15-80</td>
<td>130</td>
<td>G 1</td>
<td>99261699</td>
<td>ALPHA2 15-80</td>
<td>1.9</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-40</td>
<td>130</td>
<td>G 1 1/2</td>
<td>99261701</td>
<td>ALPHA2 25-40 (N)</td>
<td>2.0</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-40 N</td>
<td>130</td>
<td>G 1 1/2</td>
<td>99271964</td>
<td>ALPHA2 25-40 (N)</td>
<td>2.1</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-60</td>
<td>130</td>
<td>G 1 1/2</td>
<td>99261724</td>
<td>ALPHA2 25-60 (N)</td>
<td>2.0</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-60 N</td>
<td>130</td>
<td>G 1 1/2</td>
<td>99271967</td>
<td>ALPHA2 25-60 (N)</td>
<td>2.1</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-80</td>
<td>130</td>
<td>G 1 1/2</td>
<td>99261726</td>
<td>ALPHA2 25-80 (N)</td>
<td>2.0</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-80 N</td>
<td>130</td>
<td>G 1 1/2</td>
<td>99271966</td>
<td>ALPHA2 25-80 (N)</td>
<td>2.1</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-40</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99260497</td>
<td>ALPHA2 25-40 (N)</td>
<td>2.1</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-40 N</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99271969</td>
<td>ALPHA2 25-40 (N)</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-60</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99261730</td>
<td>ALPHA2 25-60 (N)</td>
<td>2.1</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-60 N</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99271971</td>
<td>ALPHA2 25-60 (N)</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-80</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99261732</td>
<td>ALPHA2 25-80 (N)</td>
<td>2.1</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-80 N</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99271972</td>
<td>ALPHA2 25-80 (N)</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-40</td>
<td>180</td>
<td>G 2</td>
<td>99261735</td>
<td>ALPHA2 32-40 (N)</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-40 N</td>
<td>180</td>
<td>G 2</td>
<td>99271994</td>
<td>ALPHA2 32-40 (N)</td>
<td>2.4</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-80</td>
<td>180</td>
<td>G 2</td>
<td>99261737</td>
<td>ALPHA2 32-80 (N)</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-60 N</td>
<td>180</td>
<td>G 2</td>
<td>99271995</td>
<td>ALPHA2 32-80 (N)</td>
<td>2.4</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-80</td>
<td>180</td>
<td>G 2</td>
<td>99261738</td>
<td>ALPHA2 32-80 (N)</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-80 N</td>
<td>180</td>
<td>G 2</td>
<td>99271996</td>
<td>ALPHA2 32-80 (N)</td>
<td>2.4</td>
<td>0.004</td>
</tr>
</tbody>
</table>

9.2 ALPHA2 for the international market

9.2.1 Model E

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Port-to-port length [mm]</th>
<th>Connection</th>
<th>Product number</th>
<th>Data sheet Page</th>
<th>Weights gross [kg]</th>
<th>Ship. vol. [m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA2 15-40</td>
<td>130</td>
<td>G 1</td>
<td>99411107</td>
<td>ALPHA2 15-40</td>
<td>1.9</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 15-50</td>
<td>130</td>
<td>G 1</td>
<td>99411113</td>
<td>ALPHA2 15-50</td>
<td>1.9</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 15-60</td>
<td>130</td>
<td>G 1</td>
<td>99411114</td>
<td>ALPHA2 15-60</td>
<td>1.9</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 15-80</td>
<td>130</td>
<td>G 1</td>
<td>99411116</td>
<td>ALPHA2 15-80</td>
<td>1.9</td>
<td>0.004</td>
</tr>
<tr>
<td>Pump type</td>
<td>Port-to-port length [mm]</td>
<td>Connection</td>
<td>Product number</td>
<td>Data sheet Page</td>
<td>Weights gross [kg]</td>
<td>Ship. vol. [m³]</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------</td>
<td>------------</td>
<td>----------------</td>
<td>-----------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>ALPHA2 20-40 N</td>
<td>150</td>
<td>G 1 1/4</td>
<td>92505498</td>
<td>ALPHA2 20-40</td>
<td>2.1</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 20-60 N</td>
<td>150</td>
<td>G 1 1/4</td>
<td>92505511</td>
<td>ALPHA2 20-60</td>
<td>2.1</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-40</td>
<td>130</td>
<td>G 1 1/2</td>
<td>99411143</td>
<td>ALPHA2 25-40</td>
<td>2.0</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-40 N</td>
<td>130</td>
<td>G 1 1/2</td>
<td>99411272</td>
<td>ALPHA2 25-40</td>
<td>2.1</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-50</td>
<td>130</td>
<td>G 1 1/2</td>
<td>99411146</td>
<td>ALPHA2 25-50</td>
<td>2.0</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-50 N</td>
<td>130</td>
<td>G 1 1/2</td>
<td>99411286</td>
<td>ALPHA2 25-50</td>
<td>2.1</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-60</td>
<td>130</td>
<td>G 1 1/2</td>
<td>99411150</td>
<td>ALPHA2 25-60</td>
<td>2.0</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-60 N</td>
<td>130</td>
<td>G 1 1/2</td>
<td>99411287</td>
<td>ALPHA2 25-60</td>
<td>2.1</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-80</td>
<td>130</td>
<td>G 1 1/2</td>
<td>99411163</td>
<td>ALPHA2 25-80</td>
<td>2.0</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-80 N</td>
<td>130</td>
<td>G 1 1/2</td>
<td>99411289</td>
<td>ALPHA2 25-80</td>
<td>2.1</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-40</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99411165</td>
<td>ALPHA2 25-40</td>
<td>2.1</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-40 N</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99411365</td>
<td>ALPHA2 25-40</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-50</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99411173</td>
<td>ALPHA2 25-50</td>
<td>2.1</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-50 N</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99411371</td>
<td>ALPHA2 25-50</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-60</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99411175</td>
<td>ALPHA2 25-60</td>
<td>2.1</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-60 N</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99411424</td>
<td>ALPHA2 25-60</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-80</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99411178</td>
<td>ALPHA2 25-80</td>
<td>2.1</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-80 N</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99411428</td>
<td>ALPHA2 25-80</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-40</td>
<td>180</td>
<td>G 2</td>
<td>99411207</td>
<td>ALPHA2 32-40</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-40 N</td>
<td>180</td>
<td>G 2</td>
<td>99411432</td>
<td>ALPHA2 32-40</td>
<td>2.4</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-50</td>
<td>180</td>
<td>G 2</td>
<td>99411215</td>
<td>ALPHA2 32-50</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-50 N</td>
<td>180</td>
<td>G 2</td>
<td>99411445</td>
<td>ALPHA2 32-50</td>
<td>2.4</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-60</td>
<td>180</td>
<td>G 2</td>
<td>99411221</td>
<td>ALPHA2 32-60</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-60 N</td>
<td>180</td>
<td>G 2</td>
<td>99411448</td>
<td>ALPHA2 32-60</td>
<td>2.4</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-80</td>
<td>180</td>
<td>G 2</td>
<td>99411263</td>
<td>ALPHA2 32-80</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-80 N</td>
<td>180</td>
<td>G 2</td>
<td>99411449</td>
<td>ALPHA2 32-80</td>
<td>2.4</td>
<td>0.004</td>
</tr>
</tbody>
</table>
9.3 ALPHA2 for the EAC market

9.3.1 Model E

<table>
<thead>
<tr>
<th>Pump type</th>
<th>Port-to-port length [mm]</th>
<th>Connection</th>
<th>Product number</th>
<th>Data sheet Page</th>
<th>Weights gross [kg]</th>
<th>Ship. vol. [m3]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALPHA2 25-40*</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99420002</td>
<td>ALPHA2 25-40</td>
<td>2.5</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-60*</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99420013</td>
<td>ALPHA2 25-60</td>
<td>2.5</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 25-80*</td>
<td>180</td>
<td>G 1 1/2</td>
<td>99420015</td>
<td>ALPHA2 25-80</td>
<td>2.5</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-40</td>
<td>180</td>
<td>G 2</td>
<td>99420016</td>
<td>ALPHA2 32-40</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-60</td>
<td>180</td>
<td>G 2</td>
<td>99420018</td>
<td>ALPHA2 32-60</td>
<td>2.3</td>
<td>0.004</td>
</tr>
<tr>
<td>ALPHA2 32-80</td>
<td>180</td>
<td>G 2</td>
<td>99420020</td>
<td>ALPHA2 32-80</td>
<td>2.3</td>
<td>0.004</td>
</tr>
</tbody>
</table>

* Including union kit Rp 1"
10. Grundfos Product Center

Online search and sizing tool to help you make the right choice.
From the international view, you can select your specific country to view the product range available to you.
International view: http://product-selection.grundfos.com

All the information you need in one place
Performance curves, technical specifications, pictures, dimensional drawings, motor curves, wiring diagrams, spare parts, service kits, 3D drawings, documents, system parts. The Product Center displays any recent and saved items - including complete projects - right on the main page.
Downloads
On the product pages, you can download installation and operating instructions, data booklets, service instructions, etc., in PDF format.

When you select your country, you will see the menus below. Note that some menus may not be available depending on the country.

Example: https://product-selection.grundfos.com/uk

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Products & services enables you to find products and documents by typing a product number or name into the search field.</td>
</tr>
<tr>
<td>2</td>
<td>Applications enables you to choose an application to see how Grundfos can help you design and optimise your system.</td>
</tr>
<tr>
<td>3</td>
<td>Products A-Z enables you to look through a list of all the Grundfos products.</td>
</tr>
<tr>
<td>4</td>
<td>Categories enables you to look for a product category.</td>
</tr>
<tr>
<td>5</td>
<td>Liquids enables you to find pumps designed for aggressive, flammable or other special liquids.</td>
</tr>
<tr>
<td>6</td>
<td>Product replacement enables you to find a suitable replacement.</td>
</tr>
<tr>
<td>7</td>
<td>WWW enables you to select the country, which changes the language, the available product range and the structure of the website.</td>
</tr>
<tr>
<td>8</td>
<td>Sizing enables you to size a product based on your application and operating conditions.</td>
</tr>
</tbody>
</table>